Engineering of
Multiagent Systems

Scott A. DelLoach, Ph.D.
Dept of Electrical and Computer Engineering
Air Force Institute of Technology

March 2001

http://en.afit.af.mil/sdeloach/ sdeloach@computer.org

Engineering of
Multiagent Systems

Scott A. DelLoach, Ph.D.
Dept of Computing & Information Sciences
Kansas State University

July 2001

http://www.cis.ksu.edu/ sdeloach@computer.org

Overview

B Motivation

® What are multiagent systems and why do we need
them

® Multiagent Systems Engineering (MaSE)
® Specification to code methodology for building
multiagent systems
m agentTool
® Automation for MaSE
® Supports design, verification, and code generation

® Wrap Up

Agent

® An agent is anything that can be viewed as
® perceiving its environment
® acting upon that environment

B An intelligent agent is an agent that
® is autonomous agent
® exhibits goal-directed behavior
® interacts with other agents

Multiagent System

m A system consisting the following elements
® An environment
® A set of objects in the environment

> Objects are passive and can be perceived, created,
destroyed & modified by agents

® A set of agents

® A set of relations, which link agents/objects

> Relations between agents are called acquaintances

g Multiagent Systems

Information
Source

Application
Agents

Why Multiagent Systems?

B Problems are physically distributed
® Networks force us to take a distributed view

B Problem complexity forces us to take a local
viewpoint

B We need systems that are
® adaptive to changes in the structure or environment
® redundant & reconfigurable
® allow integration of legacy systems
® provide automated data conversion

® give different types of users different views of
system capability and information

griT Key Aspects of Multiagent
Systems

(=101

B Action
® How do several agents act simultaneously
® What are the consequences of their actions
B Interaction

® How do we describe mechanisms allowing agents to
interact

® How do we induce specific behavior in other agents
» How to handle cooperation versus competition
® Organization
® Which agents can interact
® What types of interactions are allowed

Building Multiagent Systems

B Design must be m Methodology and
® Adaptive modeling language must
® Extensible focus on
® Dynamic ® Organization
® Verifiable ® Action

® Interaction
B Requires a principled
approach
® Methodology
® lLanguage
® Tools

Multiagent Systems Engineering

10

Methodology Goals

®m Full “engineering” approach to multiagent
systems development
® Analysis, design, and implementation
® Series of graphically based models
® |ogical approach to transforming one model into
next
B Support heterogeneous multiagent systems
® [Languages
® Architectures
® Environment

®m Tool supportable

11

— | Requirements I
AFIT
% M a S E [:Gml{ gapturing
t Hierarchy oals

Use Cases

Sequence
Diagrams

B Goal based
B Role based analysis

® Roles and tasks capture
required organization,

Applying
Use Cases

sisAjleuy ——p

actions, and interactions v« v -
(Concurrent Roles) Refining
® Roles are played by Tasks — Roles J
agent classes Croati A
. . reating
° Capture_s organization asent | Agent
B Agent design captures Classes
roles and ta§ks Emr_ Constructing o
® Conversations capture sations Conversations @
interaction =¥
- . v Assembling E
® Actions are captured via Agent) Agent
Architect
methOdS rchitecture Classes
v ¥

Deployment System
Diagrams Design 12 v

Capturing Goals

Goal Hierarchy Diagram

1. Inform admin of

host violations
1.1 Inform admin of 1.2 Inform admin of
file violations login violations.
h, h, ¥ ¥ ¥
1.1.1 Detect invalid 1.1.2 Detect invalid 1.1.3 Notify . .
file deletion file modification administrator of 1'2|'1 _Det;etct |n\t/alld
attemps. attempts. violations. ogin attempl.
Capture the “high-level” goals of the system
13
AFIT .
g Applying Use Cases
t Sequence Diagrams

[FileModiﬁedDetectoD GileNotifieD deinNotifieD [User)

FileViolation

Reported

RequestNotification

Notify

Acknowledge

NotificationComplete

Capture the basic sequence of
events between various roles

14

Refining Roles

Role Model
FileDeletionDetector | FileNotifier FileModifiedDetector
1.11 11 1.1.2

Y
LoginDetector LoginNotifier AdminNotifier
1.2.1 2 1.1.3,1.1.3a User
— - 1.2.2,1.2.2a ~

Describes all the “roles” that must be played for the
system to work as described. Includes notation of
interaction relationships

15

Refining Roles
Extended Role Model
Invalid File . Validity /="

Modification

—_—
FileDeletionDetector
1.1.1
Detect File ™ Determine
Deletions Validity nvalid File

Deletion

File
Notification

AdminNotifier
1.1.3,1.1.3a User
122,12.2a

e

LoginNotifier
1.2

LoginDetector

1.21
Detect Failed
Logins
Determine
Validity Invalid

Login
Adds the concept of Concurrent Tasks to capture the
behavior required to meet assigned goals and protocols
to capture the interactions between agents 16

Failed
Login

Detect Logins

Login
Notification

Refining Roles
Concurrent Task Diagram

receive(RequestNotification(error), agent)

FindAdmin

. a = getAdminLoc();
t = setTimer(2.0);

* send(Notify(error, agent), a) [0]
imeou

@ receieve(Acknowledge, a) * send(NotificationComplete(), agent) X

Captures

e Messaging Protocols (Interactions)
e Processing (Actions)

e Control (how interactions and actions are related)

17

§ Design
t

® We have to ensure that the organization,

action, and interaction specified in the analysis
is designed into our system

®m Transform analysis artifacts into design
artifacts

® Roles — agent classes
® Concurrent tasks — conversations and actions

18

Creating Agent Classes
Agent Diagram

FileMonitor
* FileDeletionDetector FileDetection
+__ FileModifiedDetector \
Notifier
* FileNotifier NotifyUser | Userinterface
¢ LoginNotifier e User

/ ¢ AdminNotifier
LoginMonitor LoginDetection

¢ LoginDetector

Captures the assignment of roles to agent classes and
which classes communicate via conversations. Shows
the overall organization of the system

19
Constructing Conversations
Transforming Concurrent Task Diagrams
Separate protocols into binary conversations between
individual agents
receive(RequestNotification(error), agent) FindAdmin
o o)
~ send(Notify(error, agent), a) imeout(t]
Y
@ receieve(Acknowledge, a) * send(NotificationComplete(), agent) qmﬁ
— 20

10

Constructing Conversations
Conversation Diagram (Initiator)

Captures the protocols at a binary level with some
intermediate processing

A Notify(error, agent) Acknowledge
. > wait

[timeout(t)]

21

Constructing Conversations
Conversation Diagram (Responder)

. Notify(error, agent) _ store A Acknowledge()
display(error, agent)

Each path through one side of the
conversation must “match” the other side

22

11

Assembling Agent Classes

Validator

LoginDetector

userRights : UserList
locations : LocationList

loginDetected (user, location)
loginFailed(username, location)

P validateLogin(user, location) : Boolean
validateFile(user, file) : Boolean

\

4

3

FileDetector

; e

fileModDetected (file, user)

Defines the internal architecture, methods, and control

of individual agents ... how an agent carries out actions.,

FileMonitor

LoginMonitor

I
|
|
|
|
|
|
|
| LM1:
|
|
|
|
|
|
|

LoginMonitor

FM3:
FileMonitor

Description of how the system will
look as it is executing in its actual
environment

LM2:
LoginMonitor

Lv4:
LoginMonitor

Notify: Notifier

System Design

Deployment Diagram

FileMonitor

User:
Userlnterface

FM4:
FileMonitor

12

agentTool

25

Toolset Goals

® Enforce methodology
® Allow users as much freedom as possible

® Automate design transformations
® Designer performs analysis & makes design decisions
® Tools carry out details and perform bookkeeping

®m Automate verification
® Verify at the design level before generating code

B Reuse of analysis, design, & code
®m Hide formality
B Generate “correct by construction” code

26

13

AFIT
Goal Hierarchy

+500Q

agentT ool _[O]x]

File Knowledye Base Verify CodeGen Transformation

Currently Selected | |

Goal Hierarchy |’Use Cases rSEq Diagram arIa Diagram h\uam Diagram rneplnymem

1 Content Search
Systemn

1.1 search multiple computer
systems for files

| swicem

gt Toolv1 8
R 111 specify input string

and search pararmeters

1.1.2 Searchfor
specified sting

1.1.4 resguest intermediate
results/stop the search

1.1.3Report
results

1‘1 A ?“”ﬁf‘ 113 Rank ang
nerim Results format resutts
7123 Compile 1.1.4.2 Gancel
results search request
1.3.2 Display
results

1.1.1.2 Ascept
Input

1.1.2.1 Find searchable
systems

1.1.2.2 Search Svslem
for string

0|

o | 27
lg\FIT
e Role Model
t

File Knowledge Base Verify CodeGen Transformation

Currently Selected [ConvRequest Researchers |

Goal Hierarchy ’/Use Cases ’/Seq Diagram arIe Diagram ’/Agem Diagram rDepIuymem ‘

Add Role |
Add Task

Resource Broker Registration

{Maintain Researcher Statu:

Toolvla
;‘;‘;‘y Update

Request Search
select Sequence Disgro f @/, Ll System Search File Search

Uss Casac Panel

| AddProtocol

System
11
111
112
iR}
1.31
132
1.2.3
1.4
144
142

oo Dl

[4]

28

AFIT
Concurrent Task Diagram

+500Q

agentT ool - [O]x]

File Knowledge Base Verify CodeGen Transformation

Currently Selected |Cnnv‘RequestResearchers |

Goal Hierarchy rLIse Cases rSeq Diagram arIe Diagram rTask Panel rAgenl Diagram rDepIuymenl

Add State .
Add Trans

Checkfor Reg

shutdown recewe(register(Reg\stranon)‘Researcher)
registered = check(Registration)
reglD = getlD(Registration)

select Sequence Dizgram fom.
T Casee Panel

select Sequence Disgram fom.

e Cases Pamel [registered == true]"send(; renlD}, Researcher)

Thze Cases Danel

*send(acceptance(renlD) Researcher)

[4]

29

AFIT

Agent Diagram

B00Q

F=: agentT ool J[=] B

File Knowledge Base “erify CodeGen Transformation

Gurently Gelected [CanvRegister
C ister Initiator ”r it r ‘

‘ T Goal Hierarchy | UseCases | SeqDiagram | RoleDiagram | AgentDiagram
Add Conv
o]

Resource Broker [~

Request Researchers

Researcher

[Bearch Interface | Search
prem]

D

[4]

30

AFIT

+500Q

Conversation Diagram

File Knowledge Base Werify CodeGen Transformation

S [=1E3

Currently Selected [ConvRegister

ComzRegister Initiator rcum::Register

o

Goal Hierarchy r Use Cases r Seq Diagram ’/ Role Diagram |/ Agent Diagram

‘ Add State
Add Trans

selert CURREHT Stare

. “register(Registration)

Wait

acceptanpe(reglD)y

Statet

update(realD)

B |>\z
31
Ié\FIT]]
¢ Conversation Diagram
t
I8 [=] E5

File Knowledge Base

Add State
Add Trans

select Sequence Diazram from.
Tse Cases Parel

slect Sequence Disgram fom.
Tee Cases Panel

select Sequence Disgram fom.
Tee Cases Bl

Verify CodeGen Transformation

Currently Selected [ComvRegister

ComrRegister Initiator rCorw:Register Responder rDepIuyment|

Goal Hierarchy ’/ Use Cases |/ Seq Diagram

r Role Diagram r Agent Diagram

Check for Register

. register(Reqistration)

[registered == true]"ac)

fitance(req|D)

facceptance(reglD)

registered = check{Registration)
reglD = getiD{Registration)

[registered == false]

Assign ReglD

reglD = nextiD)

[4]

32

16

Support Transformations

®m User decides “what” to do
® What roles should be played by what agent

® \What communication in a task should become a
conversation

B agentTool performs automatable tasks

® Transform tasks communications and activities into
conversations and agent methods

®m Analysis to design transformations are
currently in development

33

Automate Verification

Conversations

Conversion

T
agentTool

Promela Code

Spin
V\ - L

Feedback
* text window
« graphical 34

17

Verification Example

Initiator

. A Notify(error, agent) it Acknowledge()
wal

[timeout(t)]

Responder

A Acknowledge()

store
display(error, agent)

. Notify(error, agent)

35

g”T Feedback
n
t

proc 0 = :init: System Command

proc 1 = SendInfoInitiator Currently Selected [Conv.ColleciData

proc 2 = SendInfoResponder

proc 3 = Collectbatamnitiator (Agent Diagram |
proc 4 = CollectDataRejponder [easwe |

@p 0 1 2 3
1 . . . CollectDatalcollectData [ngamans |
. . . . CcollectData?collectData
CollectData!collectionFailure

.. Collectbata?collectionFailure
SendInfo!send

SendInfo?send
. SendInfo!acknowledge

2 . SsendInfo?acknowledge
spin: trail ends after 16 steps

Conv:CollectData Responder

® [invalidData]failureTransmission
AcollectData(sépsor, locatior

validateData

[CENE O

logFailure acknowledge @

proc 4 (CollectDataResponder) line 92 "verify" (state 27)
proc 3 (CollectDatalnitiator) line 65 "verify" (state 24)
proc 2 (SendInfoResponder) line 46 "verify" (state 24) <valid endstate>
proc 1 (SendInfoInitiator) line 25 "verify" (state 22) <valid endstate>
proc 0 (:init:) line 114 "verify" (state 6) <valid endstate>
5 processes created

DEADIOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:

Conversation Name = CollectData
Participant Name = Responder
Current State = wait
State Transition = acknowledge

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData

Participant Name = Initiator

Current State = logFailure

State Transition = acknowledge 36

18

AFIT]
Code Generation

+500Q

® Automatic from agent and conversation
diagrams

B Select platform-dependent components such
as a messaging framework

[[rars ChatS enver receiveMessage(mans Message) (8/10/99 3 2605 PM)

AFIT
Results

B00Q

B MaSE and agentTool have been used to develop several
small to medium sized multiagent systems
® Information systems
® Mixed-initiative distributed planners
® Biologically-based immune & intrusion detection systems
® Autonomous control of Uninhabited Air Vehicles
B Users report that MaSE is relatively simple, yet flexible
enough to allow a variety of solutions
B Currently developing larger scale multiagent systems
that are both mobile and dynamic in nature

B agentTool has an active user list of over 100 world-wide
academic, government, and industry users

38

19

Current Research

®m Transformations from analysis models to
design models

® Concurrent task = conversations & internal agent
design

B Extension to add dynamic capabilities
® Agent creation, Death, Mobility, Cloning

® When is the multiagent paradigm appropriate?
® Adding robustness to analysis via obstacles
® Adding ontology development to design

39

Wrap Up

m Defined multiagent systems and why we need
them

® Multiagent Systems Engineering (MaSE)

® Specification to code methodology for building
multiagent systems

®m agentTool
® Automation for MaSE

® Supports design, verification, and code generation

B For more info see http://en.afit.af.mil/ai/

40

20

